Paradoxical insulin-induced increase in gluconeogenesis in response to prolonged hypoglycemia in conscious dogs

SN Davis, R Dobbins, C Tarumi… - American Journal …, 1995 - journals.physiology.org
SN Davis, R Dobbins, C Tarumi, J Jacobs, D Neal, AD Cherrington
American Journal of Physiology-Endocrinology and Metabolism, 1995journals.physiology.org
The aim of this study was to determine the effects of differing insulin concentrations on the
gluconeogenic response to equivalent prolonged hypoglycemia. Insulin was infused
intraportally, for 3 h, into normal 18-h fasted conscious dogs at 2 (lower, n= 6) or 8 mU. kg-1.
min-1 (high, n= 7) on separate occasions. This resulted in steady-state arterial insulin levels
of 80+/-8 and 610+/-55 microU/ml, respectively. Glucose was infused during high dose to
maintain the hypoglycemic plateau (50+/-1 mg/dl) equivalent to lower. Epinephrine (806+ …
The aim of this study was to determine the effects of differing insulin concentrations on the gluconeogenic response to equivalent prolonged hypoglycemia. Insulin was infused intraportally, for 3 h, into normal 18-h fasted conscious dogs at 2 (lower, n = 6) or 8 mU.kg-1.min-1 (high, n = 7) on separate occasions. This resulted in steady-state arterial insulin levels of 80 +/- 8 and 610 +/- 55 microU/ml, respectively. Glucose was infused during high dose to maintain the hypoglycemic plateau (50 +/- 1 mg/dl) equivalent to lower. Epinephrine (806 +/- 180 vs. 2,589 +/- 260 pg/ml), norepinephrine (303 +/- 55 vs. 535 +/- 60 pg/ml), cortisol (5.8 +/- 1.2 vs. 12.1 +/- 1.5 micrograms/dl), and pancreatic polypeptide (598 +/- 250 vs. 1,198 +/- 150 pg/ml) were all increased (P < 0.05) in the presence of high-dose insulin. Net hepatic glucose production increased significantly from 2.2 +/- 0.3 to 3.8 +/- 0.5 mg.kg-1.min-1 (P < 0.05) during high-dose infusion but remained at basal levels (2.3 +/- 0.4 mg.kg-1.min-1) during lower-dose insulin. During the 3rd h of hypoglycemia, gluconeogenesis accounted for between 42 and 100% of glucose production during high-dose infusion but only 22-52% during lower-dose insulin. Intrahepatic gluconeogenic efficiency, however, increased similarly during both protocols. Lipolysis, as indicated by arterial blood glycerol levels, increased by a greater amount during high- compared with lower-dose insulin infusion. Six hyperinsulinemic euglycemic control experiments (2 or 8 mU.kg-1.min-1, n = 3 in each) provided baseline data. Gluconeogenesis remained similar to basal levels, but lipolysis was significantly suppressed during both series of hyperinsulinemic euglycemic studies. In summary, these data suggest that 1) the important counterregulatory processes of gluconeogenesis and lipolysis can be significantly increased during prolonged hypoglycemia despite an eightfold increase in circulating insulin levels and 2) the amplified gluconeogenic rate present during the hypoglycemic high-dose insulin infusions was caused by enhanced substrate delivery to the liver rather than an increase in intrahepatic gluconeogenic efficiency.
American Physiological Society