Supplementary Figure 1. Biosynthesis of DNA Pyrimidines from Glutamine. De novo
pathway of pyrimidine biosynthesis in mammalian cells. GLS1, glutaminase 1; CPS-II,
carbamoyl-phosphate synthetase II; ACTase, aspartate transcarbamoylase; OMP, orotidine

monophosphate; UMP, uridine monophosphate; PRPP, 5-phosphoribosyl pyrophosphate.
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Supplementary Figure 2. Three Distinct Sources of Aspartate Biosynthesis. (A-D) Aspartate
labeling patterns: aspartate biosynthesis through glutamine oxidation in the presence of [U-""Cs]
glutamine (A), reductive carboxylation in the presence of [1-°C,] glutamine (B), glucose
oxidation in the presence of [U-"Cg] glucose through PDH (C), or PC (D). PDH, pyruvate

dehydrogenase; PC, pyruvate carboxylase.

Supplementary Figure 3. GLS1 Inhibitor BPTES Selectively Suppresses de novo
Pyrimidine Synthesis in VHL" cells. (A) Mass Isotopomer Distribution of IMP from [U-">Cs]
glutamine in RCC Cells. Isogenic VHL" and VHL™" UMRC2 cells were treated with 2 uM
BPTES (for 48 hours) and labeled with [U-"Cs] glutamine. The enrichment of the purine
precursor inosine monophosphate (IMP) was determined by LC-MS/MS. (B) Ratio of the
pyrimidine precursors N-carbamoyl-L-aspartate to carbamoyl phosphate in isogenic VHL” and

VHL™" UMRC2 cells treated with 2 uM BPTES (for 48 hours) or DMSO vehicle control.

Supplementary Figure 4. GLS1 Inhibitors Promote Glucose Oxidation in VHL™" RCC
Cells. Isogenic VHL" and VHL"" UMRC3 cells were labeled with [U-"Cg] glucose with or
without BPTES at the indicated concentrations (for 48 hours) and the metabolite enrichment was
measured by GC-MS. (A-C) Effect of BPTES on the contribution of glucose oxidation,
determined by the level of M2 (A) and M3 (B) enriched TCA cycle intermediates, and of citrate
enrichment (C) in UMRC3 cells. Student’s #-test compared BPTES-treated to corresponding
control cells. Suc, succinate; Fum, fumarate; a-KG, a-ketoglutarate; Mal, malate; Asp, aspartate;

Glu, glutamate.

Supplementary Figure 5. ROS Enhancement Synergizes with GLS1 Inhibitors to Suppress
Cell Growth in VHL" RCC Cells. Isogenic VHL"™ and VHL"* UMRC?2 cells were cultured in
the presence of BPTES, BRD56491 (ROS enhancer), or their combination at the indicated



concentrations, for 72 hours. (A) Cell growth was determined by crystal violet staining and
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normalized to the corresponding cell type (VHL” and VHL™) cultured in DMSO-containing
medium. (B) Combination index values were determined using CompuSyn software.

Combination index value <1 indicates drug synergy. Error bars represent SEM (n=3).

Supplementary Figure 6. Inhibition of GLS1 Selectively Impairs the Growth of VHL" RCC
Cells. Isogenic pairs of VHL" and VHL™" cells were cultured in DMSO or GLS! inhibitors-
containing medium for 72 hours and cell growth was determined by crystal violet staining. Cell
growth was normalized to the corresponding cell type (VHL” or VHL™) grown in DMSO-
containing medium. (A-B) Effect of GLS1 inhibitor BPTES on the isogenic VHL” and VHL™*
RCC4 (A), and UOK102 (B) cells. (C-E) Effect of GLS1 inhibitor CB-839 on the isogenic VHL
" and VHL"*RCC4 (C), and UOK102 (D) cells, and the corresponding GI50 concentrations (E).
Error bars represent SEM (n=3). *P < 0.05, **P < 0.01, ***P < 0.001, Student’s #-test between
VHL" and VHL"" cells.

Supplementary Figure 7. Administration of Exogenous Metabolites Can Rescue the Growth
Inhibitory Effect of GLS1 Inhibitors on VHL™" Cells in All Tested Cell Lines. Isogenic VHL"
and VHL"" RCC4 (A-D) and UOK102 (E-H) cells were treated with BPTES in the presence or
absence of exogenous glutamate (2 mM), dimethyl alpha-ketoglutarate (DM-aKG) (0.5 mM),
nucleobases (5 uM), or N-acetyl cysteine (NAC) (4 mM). Relative cell growth was determined
by crystal violet staining and normalized to the growth of DMSO treated cells when
supplemented with the corresponding metabolite. Error bars represent SEM (n=3). *P < 0.05,
*k*xp < 0.001, Student’s t-test compares the effect of exogenous metabolites on the growth of

cells.

Supplementary Figure 8. GLS1 Inhibitor BPTES Induces DNA Replication Stress in VHL™"
RCC4 Cells. Isogenic VHL" and VHL™" RCC4 cell were treated with 1.5 uM BPTES for 24
hours, in the presence or absence of 1 mM glutamate or 0.5 mM dimethyl alpha-ketoglutarate
(DM-0KG). EdU incorporation and PI staining were quantified by FACS analysis. Flow
cytometry dot plots of VHL" (A) and VHL™" (B) RCC4 cells are presented. Treatment with
BPTES did not alter the cell cycle distribution of VHL" (C) or VHL™" (D) RCC4 cells but
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significantly altered the DNA synthesis of VHL” cells compared to their isogenic VHL
counterparts (E). (A-E) Addition of glutamate or DM-0KG in the tissue culture medium restored
DNA synthesis in VHL™ cells to levels comparable to VHL™" cells.

Supplementary Figure 9. Time-dependent Effect of GLS1 Inhibitor BPTES on DNA
Synthesis of VHL" UMRC2 Cells. Isogenic VHL” (A, C and E) and VHL™" (B, D and F)
UMRC2 cells were treated with DMSO vehicle control (A and B), 1.5 uM BPTES (C and D), or
1.5 uM BPTES in the presence of 0.5 mM dimethyl alpha-ketoglutarate (DM-aKG) (E and F)
for 72 hours. (A-F) DNA synthesis was quantified by pulse EdU incorporation at 24, 48 and 72
hours of treatment. (G) Suppression of DNA synthesis by BPTES at the indicated time points.

Supplementary Figure 10. Detection of DNA Replication Stress by Single Strand Sensors
phospho-CHK1 and RPA32. Isogenic VHL” and VHL"™" UMRC2 cells were treated with the
indicated concentrations of GLS1 inhibitors BPTES, CB-839 for 48 hours or 2 mM hydroxyurea
(HU) for 16 hours. Total amount and phosphsorylated species of DNA replication stress sensors
CHKI1 and RPA32 were resolved in SDS-PAGE gel and detected by immunoblot. Treatment with
HU, but not with GLS1 inhibitors, resulted in detectable phosphorylation of CHK1 and RPA32.

Supplementary Figure 11. Low Concentration of Hydroxyurea Selectively Induces DNA
Replication Stress in VHL”™ RCC Cells. Isogenic VHL” and VHL"" UMRC2 cell were
cultured in the presence or absence of hydroxyurea. (A-D) DNA synthesis rate of VHL"™ and
VHL™ UMRC2 cells was quantified by EdU incorporation. Representative flow cytometry dot
plots of VHL" (A) and VHL™ (B) UMRC2 cells. Cell cycle distribution of VHL" (C) and
VHL™ (D) UMRC2 cells. (E) Total amount and phosphsorylated species of a DNA replication
stress sensor CHK1 was resolved in SDS-PAGE gel and detected by immunoblot. (F) Cell
growth was determined by crystal violet staining and normalized to the corresponding cell type
(VHL"" and VHL") cultured in DMSO-containing medium. Error bars represent SEM (n=3). **P
<0.01, ***P <0.001, Dunnett’s test against DMSO treated cells.

Supplementary Figure 12. ROS Enhancement Synergizes with GLS1 Inhibitors to Enhance
DNA Replication Stress in VHL" RCC Cells. Isogenic VHL” and VHL"" UMRC2 cells were



cultured in the presence or absence of 0.5 uM BPTES or 2.5 uM BRD56491 (ROS enhancer), or
their combination. (A-C) DNA synthesis rate of VHL"™ and VHL™" UMRC2 cells was quantified
by EdU incorporation. Representative flow cytometry dot plots of VHL" (A) and VHL"" (B)
UMRC?2 cells. (C) Percentage of LOW EdU incorporating cells (% cells in DNA replication
stress). (D) Percentage of nuclei with the indicated number of YH2AX foci after the treatment.
(E) BRD56491 synergistically enhanced intracellular ROS levels with BPTES in VHL UMRC2
cells. Error bars represent SEM (n=3). **P < 0.01, ***P < 0.001, Dunnett’s test against DMSO

treated cells.

Supplementary Figures 13. Synergistic Effect of PARP Inhibitor Olaparib with GLS1
Inhibitors on Growth Suppression of VHL" RCC Cells.

Isogenic VHL" and VHL™* UMRC2 (Figure A-B), RCC4 (Figure C-D) and UOK102 (E-H) were
cultured in the presence of GLS1 inhibitors BPTES or CB-839 (as indicated) alone or in
combination with the PARP inhibitor olaparib, at the indicated concentrations, for 72 hours. Cell
growth is normalized to treatment with DMSO vehicle control (relative cell growth in A, C, E,
and G). Combination index values were determined using CompuSyn software (B, D, F, and H).

Combination index value <1 indicates drug synergy. Error bars represent SEM (n=3).

Supplementary Figure 14. PARP Inhibition Synergizes with GLS1 Inhibitors to Suppress
the Growth of VHL™ RCC Cells in vitro and in vivo. (A) UMRC3 cells were cultured in the
absence or presence of CB-839 and olaparib, at the indicated concentrations, for 72 hours. In
vitro cell growth was determined by crystal violet staining and normalized to the DMSO control.
(B) Combination index values were determined using CompuSyn software. Combination index
value <1 indicates drug synergy. (C-H) UMRC3 xenografts were treated with vehicle control,
CB-839 (200 mg/kg, twice daily), olaparib (75 mg/kg. once daily), or the combination of CB-839
and olaparib. Body weight change (C), tumor weight at the experimental endpoint (D), growth of
individual tumors of vehicle (E), CB-839 (F), olaparib (G), and the combination (H) are shown.

Supplementary Figure 15. HIF-2a Expression is Sufficient to Confer Sensitivity to GLS1
Inhibition in Combination with Olaparib. VHL-replete 786-O cells were stably infected with
retroviral vectors expressing the VHL-resistant HIF-2a (P405toA/P531t0oA) mutant or empty



vector as control. (A) Cells were treated with increasing concentrations of CB-839, olaparib or
their combination as indicated. (B) Western blot confirming the expression of VHL and HIF-2a

(P405toA/P531toA) mutant in the engineered cell lines.

Supplementary Figure 16. PARP Inhibition Synergizes with GLS1 Inhibitors to Suppress
Proliferation of VHL" RCC Cells as Mouse Xenografts. (A) Tumors of UMRC3 xenografts
treated with vehicle control, CB-839, olaparib, or their combination (as indicated) were scored
for proliferation (Ki-67) or apoptosis (TUNEL). H&E indicates tumor staining with hematoxylin
and eosin. (B) Quantification of xenograft Ki-67 for each treatment arm (n=9; analysis of 3
tumors x 3 random areas of Ki-67 quantification per tumor). *P < 0.05, **P < 0.01, comparison

of indicated arm to vehicle treatment control.
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